Thunderstorm, a violent short-lived weather disturbance that is almost always associated with lightning, thunder, dense clouds, heavy rain or hail, and strong gusty winds. Thunderstorms arise when layers of warm, moist air rise in a large, swift updraft to cooler regions of the atmosphere. There the moisture contained in the updraft condenses to form towering cumulonimbus clouds and, eventually, precipitation. Columns of cooled air then sink earthward, striking the ground with strong downdrafts and horizontal winds. At the same time, electrical charges accumulate on cloud particles (water droplets and ice). Lightning discharges occur when the accumulated electric charge becomes sufficiently large. Lightning heats the air it passes through so intensely and quickly that shock waves are produced; these shock waves are heard as claps and rolls of thunder. On occasion, severe thunderstorms are accompanied by swirling vortices of air that become concentrated and powerful enough to form tornadoes.
Thunder is the sound caused by lightning. Depending upon the distance from and nature of the lightning, it can range from a long, low rumble to a sudden, loud crack. The sudden increase in temperature and hence pressure caused by the lightning produces rapid expansion of the air in the path of a lightning bolt. In turn, this expansion of air creates a sonic shock wave, often referred to as a "thunderclap" or "peal of thunder". The study of thunder is known as brontology.
Cumulonimbus clouds often form thunderstorm ⛈️
CAUSES
The cause of thunder has been the subject of centuries of speculation and scientific inquiry. Early thinking was that it was made by deities, but the ancient Greek philosophers attributed it to natural causes, such as wind striking clouds (Anaximander, Aristotle) and movement of air within clouds (Democritus). The Roman philosopher Lucretius held it was from the sound of hail colliding within clouds.
In the mid 19th century, the accepted theory was that lightning produced a vacuum and that the collapse of that vacuum produced what is known as thunder.
In the 20th century a consensus evolved that thunder must begin with a shock wave in the air due to the sudden thermal expansion of the plasma in the lightning channel. The temperature inside the lightning channel, measured by spectral analysis, varies during its 50 μs existence, rising sharply from an initial temperature of about 20,000 K to about 30,000 K, then dropping away gradually to about 10,000 K. The average is about 20,400 K (20,100 °C; 36,300 °F). This heating causes a rapid outward expansion, impacting the surrounding cooler air at a speed faster than sound would otherwise travel. The resultant outward-moving pulse is a shock wave, similar in principle to the shock wave formed by an explosion, or at the front of a supersonic aircraft. In close proximity to the source, the sound pressure level of thunder is usually 165–180dB, but can exceed 200 dB in some cases.
Experimental studies of simulated lightning have produced results largely consistent with this model, though there is continued debate about the precise physical mechanisms of the process. Other causes have also been proposed, relying on electrodynamic effects of the enormous current acting on the plasma in the bolt of lightning.
CONSEQUENCES
The shock wave in thunder is sufficient to cause property damage and injury, such as internal contusion, to individuals nearby. Thunder can rupture the eardrums of people nearby, leading to permanently impaired hearing. Even if not, it can lead to temporary deafness.
TYPES
Vavreketal. (n.d.) reported that the sounds of thunder fall into categories based on loudness, duration, and pitch. Claps are loud sounds lasting 0.2 to 2 seconds and containing higher pitches. Peals are sounds changing in loudness and pitch. Rolls are irregular mixtures of loudness and pitches. Rumbles are less loud, last for longer (up to more than 30 seconds), and of low pitch.
Inversion thunder results when lightning strikes between cloud and ground occur during a temperature inversion; the resulting thunder sounds have significantly greater acoustic energy than from the same distance in a non-inversion condition. In an inversion, the air near the ground is cooler than the higher air; inversions often occur when warm moist air passes above a cold front. Within a temperature inversion, the sound energy is prevented from dispersing vertically as it would in a non-inversion and is thus concentrated in the near-ground layer.
Thunder is the sound produced by lightning.
Cloud-to-ground lightning typically consists of two or more return strokes, from ground to cloud. Later return strokes have greater acoustic energy than the first.
0 Comments
Your comment is safe and secured